New Results on Γ-limits of Integral Functionals

نویسنده

  • NADIA ANSINI
چکیده

For ψ ∈ W 1,p(Ω;Rm) and g ∈ W−1,p(Ω;Rd), 1 < p < +∞, we consider a sequence of integral functionals F k : W 1,p(Ω;Rm)× Lp(Ω;Rd×n)→ [0,+∞] of the form F k (u, v) =  ∫ Ω fk(x,∇u, v) dx if u− ψ ∈W 1,p 0 (Ω;Rm) and div v = g, +∞ otherwise, where the integrands fk satisfy growth conditions of order p, uniformly in k. We prove a Γ-compactness result for F k with respect to the weak topology of W 1,p(Ω;Rm) × Lp(Ω;Rd×n) and we show that under suitable assumptions the integrand of the Γ-limit is continuously differentiable. We also provide a result concerning the convergence of momenta for minimizers of F k . Résumé. Pour tout ψ ∈ W 1,p(Ω;Rm) et g ∈ W−1,p(Ω;Rd), 1 < p < +∞, nous considérons une suite de fonctionnelles intégrale F k : W 1,p(Ω;Rm)× Lp(Ω;Rd×n)→ [0,+∞] définies par F k (u, v) =  ∫ Ω fk(x,∇u, v) dx si u− ψ ∈W 1,p 0 (Ω;Rm) et div v = g, +∞ sinon, où les intégrandes fk satisfont des conditions de croissance d’ordre p, uniformément en k. Nous démontrons un résultat de Γ-compacité pour F k par rapport à la topologie faible sur W 1,p(Ω;Rm)× Lp(Ω;Rd×n) et nous prouvons que sous des conditions appropriées, l’intégrande de la Γ-limite est continûment différentiable. Nous montrons également un résultat de convergence des moments pour les minima de F k .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closure and Commutability Results for Γ-Limits and the Geometric Linearization and Homogenization of Multiwell Energy Functionals

Abstract. We consider a family of integral functionals, doubly indexed by ε > 0 and j ∈ N∪{∞}, satisfying a uniform G̊arding-type inequality. If these functionals Γ-converge for every j ∈ N as ε → 0, then the same holds also for j = ∞ if the densities fulfill a certain equivalence condition. In that case the Γ-limit for j = ∞ is recovered as the limit of the Γ-limits for finite j as j → ∞. We th...

متن کامل

A Two Scale Γ-convergence Approach for Random Non-convex Homogenization

We propose an abstract framework for the homogenization of random functionals which may contain non-convex terms, based on a two-scale Γ-convergence approach and a definition of Young measures on micropatterns which encodes the profiles of the oscillating functions and of functionals. Our abstract result is a lower bound for such energies in terms of a cell problem (on large expanding cells) an...

متن کامل

Relaxation in Bv for a Class of Functionals without Continuity Assumptions

This paper is devoted to prove new relaxation and Γ-convergence theorems on BV(Ω) for a class of integral functionals, whose integrands have a product type structure, but they do not satisfy any assumptions of coerciveness or continuity with respect to the spatial variable.

متن کامل

Thin-film Limits of Functionals on A-free Vector Fields

This paper deals with variational principles on thin films with linear PDE constraints represented by a constant-rank operator A, and studies the effective behavior, in the sense of Γ-convergence, of integral functionals as the thickness of the domain tends to zero. The limit integral functional turns out to be determined by the A-quasiconvex envelope of the original energy density and is const...

متن کامل

Γ-convergence of functionals on divergence-free fields

We study the stability of a sequence of integral functionals on divergence-free matrix valued fields following the direct methods of Γ-convergence. We prove that the Γ-limit is an integral functional on divergence-free matrix valued fields. Moreover, we show that the Γlimit is also stable under volume constraint and various type of boundary conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013